Ecotec Camshaft Options - Performance Forum

Forum Post / Reply
You must log in before you can post or reply to messages.
Ecotec Camshaft Options
Monday, July 04, 2005 7:36 PM
This maybe useful for some people I will update as more options become available.

J-Body Performance
http://www.jbodyperformance.com/new/PartDetails.php?partId=288&catId=288&catName=JP0288
Stage 1 and 2, both are $699CDN
"NJs Honda Killa" on the org has these cams and has nothing but good things to say about them, allthough with this company there are a lot of complaints about wait time for ordered products.

Mantapart
http://www.mantapart.com/ecotec.html
You would want the "Sports Camshaft Set" which promises no codes at a price of $600USD. These guys also have a bad rap for their customer service.

Comp Cams
http://www.compcams.com/information/whatsnew/NewsDetails.asp?ListHistoryID=1110992703
No Prices/stats listed. Has a long stnding good rep for cams of all types.

Crane Cams
http://www.howellautomotive.com/Howell/Store/catalog/catalog/product_info.php?cPath=41_156_356&products_id=1364
Sold by Howell automotive, $450USD, I've read of a few people that have these, and again no complaints.

RSM Racing
http://www.rsmracing.com/cav2_2_eco.htm
15-18 HP increase, $1050.00 + $100.00 core charge

Crower Cams
http://www.crower.com/misc/contact.shtml
These are buy order only at the moment. There are a few posts on the org with reference to these cams. Apparently (from Mr. Crower himself, as told to the poster) the cams are $400 and promise 20-25hp (*cough*)

Level Zero Motorsports
http://www.levelzeromotorsports.com/store/view_product.php?product=1
$500UDS, 15HP
I think ZERO is the key word here, as people have reported either all or nothing with these things. Not worth the gamble IMO




_______________________
Project L61 - Slowly but Surely
16.2@82.54 Auto w/ Intake and Exhaust
14.9@89.79 w/ a Blower






Re: Ecotec Camshaft Options
Tuesday, July 05, 2005 1:04 PM
Thank you for the links and info. don't forget the GM camshaft blanks they are about $63 each, but you have to remember that they are blank, and that they will have to be ground for your application, street, strip, or turbo to name a few.



Re: Ecotec Camshaft Options
Tuesday, July 05, 2005 1:05 PM
Some people on the org had the level zero's I think and they threw codes from what I remember.

I've also heard of people getting rid of the codes by run premium gas.



Read, then process the info, think logically, than if you don't have a headache afterwards, post your response
Re: Ecotec Camshaft Options
Tuesday, July 05, 2005 10:46 PM
i have to disagree on the mantapart service comment, they've been VERY helpful and responsive to me
Re: Ecotec Camshaft Options
Wednesday, July 06, 2005 7:19 PM
Here is a really helpful about cams from comp cams. they are going to send me a sheet with specs if I can get my fax working. worst comes to worst I will have the info sent to work, so we will have info on their product soon. heres the link on what going on in your car.

Comp Cams






Re: Ecotec Camshaft Options
Thursday, July 07, 2005 12:04 PM
Mantapart blows on customer service, I've heard of them taking over a year to send parts or refund money



Read, then process the info, think logically, than if you don't have a headache afterwards, post your response
Re: Ecotec Camshaft Options
Friday, July 08, 2005 7:31 PM
as promised here is the information for the grinds from Comp Cams. I got more information than I really expected. they have four different grinds, street, street strip, blower, and turbo. I'm pretty sure these are in order of how aggressive they are. I did not ask about codes but I will include more contact info later in the post.

Street 113200 set (113201 int / 113202 exh ) grind # ECO XE252HR-11

Grind Specs 8758/8759 HR111

INT
Max Gross Lift: .423
Cam Lobe Lift: .250
Advertised Duration: 252
Duration @ 0.50 Valve Lift: 210
Valve Timing @
0.50 Valve Lift: BTDC: -5
BBDC: 38

EXH
Max Gross Lift: .419
Cam Lobe Lift: .248
Advertised Duration: 256
Duration @ 0.50 Valve Lift: 212
Valve Timing @
0.50 Valve Lift: ATDC: -6
ABDC: 38
These specs are for the cams installed at the following maximum lift centerlines: INT:110 EXH: 112


Street /Strip 113300 set 113301 INT/113302 EXH ) GRIND # ECO XE258HR-11

Grind Specs 8760/8761 HR111

INT
Max Gross Lift: .440
Cam Lobe Lift: .260
Advertised Duration: 258
Duration @ 0.50 Valve Lift: 216
Valve Timing @
0.50 Valve Lift: BTDC: -2
BBDC: 41

EXH
Max Gross Lift: .436
Cam Lobe Lift: 258
Advertised Duration: 262
Duration @ 0.50 Valve Lift: 218
Valve Timing @
0.50 Valve Lift: ATDC: -3
ABDC: 38

These specs are for the cams installed at the following maximum lift centerlines: INT:110 EXH: 112


Blower/Super Charger 113250 (113251 INT/ 113252 EXH) GRIND # ECO XE252BHR-13

Grind Specs 8758/8761 HR113

INT
Max Gross Lift: .423
Cam Lobe Lift: .250
Advertised Duration: 252
Duration @ 0.50 Valve Lift: 210
Valve Timing @
0.50 Valve Lift: BTDC: -7
BBDC: 43

EXH
Max Gross Lift: .436
Cam Lobe Lift: .258
Advertised Duration: 262
Duration @ 0.50 Valve Lift: 218
Valve Timing @
0.50 Valve Lift: ATDC: -5
ABDC: 37

These specs are for the cams installed at the following maximum lift centerlines: INT:112 EXH: 114


Turbo 113150 SET (113151 INT/113152 EXH ) Grind # ECO XE246THR-13

Grind Specs 8756/8755 HR113

INT
Max Gross Lift: .423
Cam Lobe Lift: .250
Advertised Duration: 248
Duration @ 0.50 Valve Lift: 204
Valve Timing @
0.50 Valve Lift: BTDC: -10
BBDC: 34

EXH
Max Gross Lift: .419
Cam Lobe Lift: .248
Advertised Duration: 244
Duration @ 0.50 Valve Lift: 200
Valve Timing @
0.50 Valve Lift: ATDC: -14
ABDC: 34

These specs are for the cams installed at the following maximum lift centerlines: INT: 112 EXH: 114

Below is an explanation of how to read this and what everything means. and yes this IS the short version. Camshafts are a critical component of you valve-train. if you go with / ask for the wrong thing, you could end up with a poorly running engine, instead of a beast.





Re: Ecotec Camshaft Options
Friday, July 08, 2005 7:35 PM

In an effort to simplify what actually happens inside an engine, COMP CamsŪ invites you to "take a walk" inside a typical engine, just like the one you might have in your car. We will discuss valve events, piston position, overlap and centerlines. Although we can not explain cam design in such a small space, we might be able to clear up some of the most misunderstood terms and make clearer what actually happens as the engine goes through its four-stroke cycle. We will graphically illustrate the relationship between all parts of the engine and try to help you understand how the camshaft affects the power of the engine. Put on your walking shoes, open your eyes and get ready for a good look inside this engine.

We begin with the piston all the way at the top with both valves closed. Just a few degrees ago the spark plug fired and the explosion and the expansion of the gasses is forcing the piston towards the bottom of the cylinder. This is the event that actually pushes the crankshaft around to create the power and is referred to as the "power stroke" (figure 1). Each "stroke" lasts one half crankshaft revolution or 180 crankshaft degrees. Since the camshaft turns at half of the speed of the crank, the power stroke only sees one fourth of a turn of the cam, or 90 camshaft degrees.

As we move closer to the bottom of the cylinder, a little before the piston reaches the bottom, the exhaust valve begins to open. By this time most of the charge has been burned and the cylinder pressure will begin to push this burnt mixture out into the exhaust port. After the piston passes the true bottom or Bottom Dead Center, it begins to rise back to the top. Now we have begun the exhaust stroke, another 180° in the cycle (figure 2). This forces the remainder of the mixture out of the chamber to make room for a fresh, clean charge of air-fuel mixture. While the piston is moving toward the top of the cylinder, the exhaust valve quickly opens, goes through maximum lift and begins to close.

Now something quite unique begins to take place. Just before the piston reaches the top, the intake valve begins to open and the exhaust valve is not yet fully closed. This doesn't sound right, does it? Let's try to figure out what is happening.

The exhaust stroke of the piston has pushed out just about all of the spent charge and as the piston approaches the top and the intake valve begins to open slowly, there begins a siphon or "scavenge" effect in the chamber. The rush of the gases out into the exhaust port will draw in the start of the intake charge. This is how the engine flushes out all of the used charge. Even some of the new gases escape into the exhaust. Once the piston passes through Top Dead Center and starts back down, the intake charge is being pulled in quickly so the exhaust valve must close at precisely the right point after the top to keep any burnt gas from reentering. This area around Top Dead Center with both valves open is referred to as "overlap". This is one of the most critical moments in the running cycle, and all points must be positioned correctly with the Top Dead Center of the piston. We'll look at this much more closely later.

We have now passed through overlap. The exhaust valve has closed just after the piston started down and the intake valve is opening very quickly. This is called the intake stroke (figure 3), where the engine "breathes" and fills itself with another charge of fresh air/fuel mixture. The intake valve reaches its maximum lift at some defined point (usually about 106 degrees) after top dead center. This is called the intake centerline, which refers to where the cam has been installed in the engine in relation to the crankshaft. This is commonly called "degreeing". We will talk about this later also.

The piston again goes all the way to the bottom and as it starts up, the intake valve is rushing towards the seat. The closing point of the intake valve will determine where the cylinder actually begins to build pressure, as we are now into the compression stroke (figure 4). When the mixture has all been taken in and the valves are both closed, the piston begins to compress the mixture. This is where the engine can really build some power. Then, just prior to the top, the spark plug fires and we are ready to start all over again.

The engine cycle we have just observed is typical of all four- stroke engines. There are several things we have not discussed, such as lift, duration, opening and closing points, overlap, intake centerline and lobe separation angle. If you will refer to the valve timing diagram when we discuss these terms it might make things a lot easier to understand.

Most cams are rated by duration at some defined lift point. As slow as the valve opens and closes at the very beginning and end of its cycle, it would be impossible to find exactly where it begins to move. In the case illustrated, the rated duration is at .006" tappet lift. In our plot, we use valve lift so we must multiply by the rocker arm ratio to find this lift. For example, .006" x 1.5 =.009". Instead of the original .006" tappet lift, we now use .009" valve lift. These opening and closing points are circled so that you can see them. If you count the number of degrees between these points you will arrive at the advertised duration, in this case 270 degrees of crank- shaft rotation. In this illustration this is the same for both the intake and the exhaust lobes, thus making this a single pattern cam. Some cam manufacturers rate their cams at .050" lift. If we again multiply this by the rocker arm ratio, we get .075". we can mark the diagram and read the duration at .050" lift. This cam shows around 224 degrees, standard for this 270H cam. The lift is very simple to determine. You can simply read it from the axis going up. This is the lift at the valve as we said earlier. Sometimes you will hear lift referred to as "lobe lift". This means the lift at the lobe or the valve lift divided by the rocker arm ratio. In this case, it would be .470" divided by 1.5 or .313" lobe lift. The lift is simply a straightforward measurement of the rise of the valve or lifter

valve timing illustration We touched on opening and closing points a little earlier, but now we want to consider them even further. We talked about when these points occur, and how they are measured. As you can see in figure 1, the valve begins to move very slowly then picks up speed as it approaches the top. It does the same closing, coming down quickly then slowing to a gentle stop. It's kind of like driving your car. If you were to go from 0 to 60 mph in a fraction of a second and stop instantly, you can imagine what that would do to the car, not to mention the driver. It would be much too severe for any valve train to endure. You would bend pushrods, wear out cams, break springs and rockers, and lose all dynamic design. The cam would not run to the desired RPM level as you would have all these parts running into each other. As the valve approaches the seat, you also have to slow it down to keep the valve train from making any loud noises. If you slam the valve down onto the seat, you can expect some severe noise and a lot of worn and broken parts. So it is easy to see that you can only accelerate the valve a certain amount before you get into trouble. This is some- thing Competition Cams has learned over the years-how far you can safely push this point.

Looking a bit further at the timing points, the first one we see on the diagram is the exhaust opening point. We have all noticed the different sounds of performance cams, with the distinct lopes or rough idle. This occurs when the exhaust valve opens earlier and lets the sound of combustion go out into the exhaust pipes. It may actually still be burning a little when it passes out of the engine, so this can be a very pronounced sound.

The next point on the graph is the intake opening. This begins the overlap phase, which is very critical to vacuum, throttle response, emissions and especially, gas mileage. The amount of overlap, or the area between the intake opening and the exhaust closing, and where it occurs, is one of the most critical points in the engine cycle. If the intake valve opens too early, it will push the new charge into the intake manifold. If it occurs too late, it will lean out the cylinder and greatly hinder the performance of the engine. If the exhaust valve closes too early it will trap some of the spent gases in the combustion chamber, and if it closes too late it will over-scavenge the chamber; taking out too much of the charge, again creating an artificially lean condition. If the overlap phase occurs too early, it will create an overly rich condition in the exhaust port, severely hurting the gas mileage. So, as you can see, everything about overlap is critical to the performance of the engine.

The last point in the cycle is the intake closing. This occurs slightly after Bottom Dead Center, and the quicker it closes, the more cylinder pressure the engine will develop. You have to be very careful, however, to make sure that you hold the valve open long enough to properly fill the chamber, but close it soon enough to yield maxi mum cylinder pressure. This is a very tricky point in the cycle of the camshaft.

The last thing we will discuss is the difference between intake centerline and lobe separation angle. These two terms are often confused. Even though they have very similar names, they are very different and control different events in the engine. Lobe separation angle is simply what it says. It is the number of degrees separating the peak lift point of the exhaust lobe and the peak point of the intake lobe. This is sometimes referred to as the "lobe center" of the cam, but we prefer to call it the lobe separation angle. This can only be changed when the cam is ground. It makes no difference how you degree the cam in the engine, the lobe separation angle is ground into the cam. The intake centerline, on the other hand, is the position of the centerline, or peak lift point, of the intake lobe in relation to top dead center of the piston. This can be changed by "degreeing" the cam into the engine. Figure 1 shows a normal 270 degree cam. It has a lobe separation of 110°. We show it installed in the engine 4° advanced, or at 106° intake centerline. The light grey curves show the same camshaft installed an additional four degrees advanced, or at 102 degrees intake centerline. You can see how much earlier overlap is taking place and how the intake valve is open a great deal before the piston starts down. This is usually considered as a way to increase bottom end power, but as you can see there is much of the charge pushed out the exhaust, making a less efficient engine. There is a recommended intake centerline installation point on each cam card, and it is important to install the cam at this point. As far as the mechanics of cam degreeing, Competition Cams has produced a simple, comprehensive video (part #190) that will take you step by step through the process.

On these pages we have discussed theory but the video will show you how to actually get the job done. Competition Cams has put a great deal of effort into the design and engineering of our camshafts. All of these points were considered in each and every cam listed in this catalog What we intend to do here is show that camshaft design is not some "black art" but, rather, a series of decisions and compromises based on the exact application of the cam. Only our many years of experience can say whether a certain combination of lobes will work, so you should trust the judgement of those who have engineered these combinations. If you have any other questions, the Competition Cams Technical Staff can be reached at 1-800-999-0853 and will be glad to answer them for you.



Re: Ecotec Camshaft Options
Friday, July 08, 2005 7:38 PM
Fig.1


Fig.2







Re: Ecotec Camshaft Options
Thursday, August 11, 2005 1:40 PM
Well so in your guys opinion, what is te best cams for a street/strip set up. I looked at all the links and I like what I see but I want some good reliable one's



Beware the Rouge Dragon.

Re: Ecotec Camshaft Options
Sunday, August 14, 2005 10:28 AM
what else do you need to replace in an ecotec motor for cams to work ?

valves, springs, retainers, cam gears?????

thank you for your help

<img src="http://i4.photobucket.com/albums/y150/speedking017/JBObannerUSE.jpg" alt="Image hosted by Photobucket.com">

Re: Ecotec Camshaft Options
Sunday, August 14, 2005 11:47 AM
you don't really have to replace much of anything, but it will come down to how many miles you have on your car, and how much you dog it. the new Haynes manual covers the Eco, and replacing the camshafts is in there.






Forum Post / Reply
You must log in before you can post or reply to messages.

 

Start New Topic Advanced Search